Asam amino ialah asam karboksilat yang mempunyai gugus amino. Asam amino yang terdapat sebagai komponen protein mempunyai gugus –NH2 pada atom karbon dari posisi gugus –COOH (Poedjiadi, 1994 ).
Pada umumnya asam amino larut dalam air dan tidak larut dalam pelarut organik non polar seperti eter, aseton, dan klorofil sifat asam amino ini berbeda dengan asam karboksilat maupun dengan asam amina. Asam karboksilat aliafatik maupun aromatik yang terdiri atas beberapa atom karbon umumnya kurang larut dalam air tetapi larut dalam pelarut organik. Demikian pula amina pada umumnya tidak larut dalam air tetapi larut dalam pelarut organik (Poedjiaji, 1994).
Kata protein berasal dari protos atau proteos yang pertama atau utama. Protein merupakan komponen penting atau komponen utama sel hewan atau manusia. oleh karena sel itu merupakan pembentuk tubuh kita, maka protein yang terdapat dalam makanan berfungsi sebagai zat utama dalam pembentukan dan pertumbuhan tubuh (Poedjiadi, 1994).
Protein adalah molekul penyusun tubuh kita yang terbesar setelah air. Hal ini mengindikasikan pentingnya protein dalam menopang seluruh proses kehidupan dalam tubuh. Dalam kenyataannya, memang kode genetik yang tesimpan dalam rantaian DNA digunakan untuk membuat protein, kapan, dimana dan seberapa banyak. Protein berfungsi sebagai penyimpan dan pengantar seperti hemoglobin yang memberikan warna merah pada sel darah merah kita, bertugas mengikat oksigen dan membawanya ke bagian tubuh yang memerlukan.
Selain itu juga menjadi penyusun tubuh, "dari ujung rambut sampai ujung kaki", misalnya keratin di rambut yang banyak mengandung asam amino Cysteine sehingga menyebabkan bau yang khas bila rambut terbakar karena banyaknya kandungan atom sulfur di dalamnya, sampai kepada protein-protein penyusun otot kita seperti actin, myosin, titin, dsb. Kita dapat membaca teks ini juga antara lain berkat protein yang bernama rhodopsin, yaitu protein di dalam sel retina mata kita yang merubah photon cahaya menjadi sinyal kimia untuk diteruskan ke otak. Masih banyak lagi fungsi protein seperti hormon, antibodi dalam sistem kekebalan tubuh, dll (Witarto, 2001).
Protein mempunyai molekul besar dengan bobot molekul bervariasi antara 5000 sampai jutaan. Dengan cara hidrolisis oleh asam atau oleh enzim, protein akan menghasilkan asam-asam amino. Ada 20 jenis asam amino yang terdapat dalam molekul protein. asam-asam amino ini terikat satu dengan lain oleh ikatan peptide. Protein mudah dipengatuhi oleh suhu tinggi, PH dan pelarut organik (Poedjiadi, 1994).
Protein adalah molekul penyusun tubuh kita yang terbesar setelah air. Hal ini mengindikasikan pentingnya protein dalam menopang seluruh proses kehidupan dalam tubuh. Dalam kenyataannya, memang kode genetik yang tesimpan dalam rantaian DNA digunakan untuk membuat protein, kapan, dimana dan seberapa banyak. Protein berfungsi sebagai penyimpan dan pengantar seperti hemoglobin yang memberikan warna merah pada sel darah merah kita, bertugas mengikat oksigen dan membawanya ke bagian tubuh yang memerlukan. Selain itu juga menjadi penyusun tubuh, "dari ujung rambut sampai ujung kaki", misalnya keratin di rambut yang banyak mengandung asam amino Cysteine sehingga menyebabkan bau yang khas bila rambut terbakar karena banyaknya kandungan atom sulfur di dalamnya, sampai kepada protein-protein penyusun otot kita seperti actin, myosin, titin, dsb. Kita dapat membaca teks ini juga antara lain berkat protein yang bernama rhodopsin, yaitu protein di dalam sel retina mata kita yang merubah photon cahaya menjadi sinyal kimia untuk diteruskan ke otak. Masih banyak lagi fungsi protein seperti hormon, antibodi dalam sistem kekebalan tubuh, dll (Witarto, 2001).
Protein berfungsi sebagai katalisator, sebagai pengangkut dan penyimpan molekul lain seperti oksigen, mendukung secara mekanis sistem kekebalan (imunitas) tubuh, menghasilkan pergerakan tubuh, sebagai transmitor gerakan syaraf dan mengendalikan pertumbuhan dan perkembangan. Analisa elementer protein menghasilkan unsur-unsur C, H, N dan 0 dan sering juga S. Disamping itu
beberapa protein juga mengandung unsur-unsur lain, terutama P, Fe, Zi dan Cu (Katili, 2009).
Fungsi protein ditentukan oleh konformasinya, atau pola lipatan tiga dimensinya, yang merupakan pola dari rantai polipeptida. Beberapa protein, seperti keratin rambut dan bulu, berupa serabut, dan tersusun membentuk struktur linear atau struktur seperti lembaran dengan pola lipatan berulang yang teratur. Protein lainnya seperti kebanyakan enzim, terlipat membentuk konformasi globuler yang padat dan hampir menyerupai bentuk bola. Konformasi akhir bergantung pada berbagai interaksi yang terjadi (Kuchel dan Ralston, 2006 ).
Peran dan aktivitas protein dalam proses biologis antara lain sebagaikatalis enzimatik, bahwa hampir semua reaksi kimia dalam system biologi dikatalis oleh
makromolekul yang disebut enzim yang merupakan satu jenis protein. Sebagian reaksi seperti hidrasi karbondioksida bersifat sederhana, sedangkan reaksi lainnya seperti replikasi kromosom sangat rumit. Enzim mempunyai daya katalitik yang besar, urnumya meningkatkan kecepatan reaksi sampai jutaan kali. Peran lainnya dari protein dalam sistem biologi adalah sebagai transport dan penyimpanan. Contohnya transport oksigen dalam eritrosit oleh hemoglobin dan rnioglobin yakni sejenis protein yang mentransport oksigen dalam otot. Selain itu terdapat beberapa jenis protein lainnya seperti filament yang berfungsi dalam koordinasi gerak, protein fibrosa yang berfungsi untuk menjaga ketegangan kulit dan tulang, protein kolagen yang merupakan komponen serat utama dalam kulit, tulang, tendon, tulang rawan dan gigi; antibodi merupakan protein yang sangat spesifik dan dapat mengenal serta berkombinasi dengan benda asing seperti virus, bakteri dan sel yang berasal dari organisme lain, membangkitkan dan menghantar impuls sara£ Respons sel saraf terhadap rangsang spesifik diperantarai oleh protein reseptor, misalnya rodopsin suatu protein yang sensitif terhadap cahaya yang ditemukan pada sel batang retina. Protein reseptor yang dapat dipicu oleh molekul kecil spesifik seperti asetilkolin yang berperan dalam transmisi impuls saraf pada sinap yang menghubungkan sel-sel saraf dan pengaturan perturnbuhan dan diferensiasi (Witarto, 2001).
Protein bersifat amfoter, yaitu dapat bereaksi dengan larutan asam maupun basa sebagian ada yang mudah larut dan ada pula yang sukar larut. namun semua protein tidak larut dalam pelarut lemak seperti eter dan kloroform. apabila protein dipanaskan atau ditambah etanol absolute, maka protein akan menggumpal (terkoagulasi). Hal ini disebabkan etanol menarik mantel air yang melingkupi molekul-molekul protein (Yasid dan Nursanti, 2006).
Pada umumnya, protein sangat peka terhadap pengaruh-pengaruh fisik dan kimia, sehingga mudah mengalami perubahan bentuk perubahan atau modifikasi pada struktur molekul protein disebut denaturasi. Hal-hal yang dapat menyebabkan terjadinya denaturasi adalah panas, PH, tekanan, aliran listrik, dan adanya bahan kimia seperti urea, alkohol atau sabun. Proses denaturasi kadang berlangsung secara reversible, tetapi adapula yang irreversible, tergantung pada penyebabnya. protein yang mengalami denaturasi akan menurunkan aktivitas biologinya dan berkurang kelarutannya, sehingga mudah mengendap (Yasid dan Nursanti, 2006).
Reaksi-reaksi untuk mengidentifikasi asam amino dan protein antara lain (Poedjadi,1994) :
a. Reaksi sakaguci
Reaksi sakaguci dilakukan dengan menggunakan pereaksi nafol dan natrium hipobromit. Pada dasarnya reaksi ini dapat memberi hasil positif apabila ada gugus guanidin. Jadi arginin atau protein yang mengandung arginin dapat menghasilkan warna merah.
b. Reaksi Xantoprotein
Larutan asam nitrat pekat ditambahkan dengan hati-hati ke dalam larutan protein. Setelah dicampur terjadi endapan putih yang dapat berubah menjadi kuning apabila dipanaskan. Reaksi yang terjadi adalah nitrasi pada inti benzena yang terdapat pada molekul protein. Jadi reaksi ini positif jika mengandung tirosin, fenil alanin dan triptofan.
c. Reaksi Hopkins-Cole
Triptofan dapat berkondensasi dengan beberapa aldehida dengan bantuan asam kuat dan membentuk senyawa yang berwarna. Larutan protein yang mengandung triptofan dapat direasikan dengan pereaksi Hopkins-Cole yang mengandung asam glioksilat. Reaksi Hopkins-Cole memberi hasil positif khas untuk gugus indol dalam protein.
Protein adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer – monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus.
Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton. Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof).
Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida, lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia. Protein ditemukan oleh Jöns Jakob Berzelius pada tahun 1838.
Biosintesis protein alami sama dengan ekspresi genetik. Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom. Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi.
Sumber – sumber protein berasal dari Daging, Ikan, Telur, Susu, dan produk sejenis Quark, Tumbuhan berbji, Suku polong-polongan dan Kentang.
B.Struktur Protein
Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat). Struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Sementara itu, struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:
• alpha helix (α-helix, "puntiran-alfa"), berupa pilinan rantai asam-asam amino berbentuk seperti spiral;
• beta-sheet (β-sheet, "lempeng-beta"), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);
• beta-turn, (β-turn, "lekukan-beta"); dan
• gamma-turn, (γ-turn, "lekukan-gamma").
Gabungan dari aneka ragam dari struktur sekunder akan menghasilkan struktur tiga dimensi yang dinamakan struktur tersier. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener. Contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin.
Struktur primer protein bisa ditentukan dengan beberapa metode:
(1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer,
(2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman,
(3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan
(4) penentuan massa molekular dengan spektrometri massa.
Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR). Spektrum CD dari puntiran-alfa menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amida-I dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah.
Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional.
C. Fungsi Protein
Protein sendiri mempunyai banyak sekali fungsi di tubuh kita. Pada dasarnya protein menunjang keberadaan setiap sel tubuh, proses kekebalan tubuh. Setiap orang dewasa harus sedikitnya mengkonsumsi 1 g protein per kg berat tubuhnya. Kebutuhan akan protein bertambah pada perempuan yang mengandung dan atlet.atlet.
Fungsi lainnya untuk membentuk jaringan tubuh dengan kandungan asam aminonya. Protein membentuk kehidupan manusia, protein selalu dihubungkan dengan mahluk hidup dan upaya untuk mengetahui bagaimana kehidupan bermula dipusatkan pada bagimana protein mulanya terbentuk.
Protein berperan sebagai struktural yang membangun tubuh kita. Enzim protein memecah makanan menjadi zat gizi yang dapat digunakan sel. Sebagai anti bodi, mereka melindugi kita dari penyakit. Hormon peptida membawa pesan-pesan yang mengkoordinasi pelangsungan aktivitas tubuh dan protein melakukan lebih banyak lagi, mereka memandu perkembangn kita dimasa kanak-kanak dan memperhatikan tubuh kita selama masa dewasa. Mereka telah membuat kita menjadi individu unik sebagaimana kita sekarang.
Kualitas protein didasarkan pada kemampuannya untuk menyediakan nitrogen dan asam amino bagi pertumbuhan, pertahanan dan memperbaiki jaringan tubuh. Secara umum kualitas protein tergantung pada dua karakteristik berikut:
1. Digestibilitas protein (untuk dapat digunakan oleh tubuh, asam amino harus dilepaskan dari komponen lain makanan dan dibuat agar dapat diabsorpsi. Jika komponen yang tidak dapat dicerna mencegah proses ini asam amino yang penting hilang bersama feses).
2. Komposisi asam amino seluruh asam amino yang digunakan dalam sintesis protein tubuh harus tersedia pada saat yang sama agar jaringan yang baru dapat terbentuk.dengan demikian makanan harus menyediakan setiap asam amino dalam jumlah yang mencukupi untuk membentuk as.amino lain yang dibutuhkan.
Faktor yang mempengaruhi kebutuhan protein :
1. Perkembang jaringan
Periode dimana perkembangn terjadi dengan cepat seperti pada masa janin dan kehamilan membutuhkan lebih banyak protein.
2. Kualitas protein
Kebutuhan protein dipengaruhi oleh kualitas protein makanan pola as.aminonya. Tidak ada rekomendasi khusus untuk orang-orang yang mengonsumsi protein hewani bersama protein nabati. Bagi mereka yang tidak mengosumsi protein hewani dianjurkan untuk memperbanyak konsumsi pangan nabatinya untuk kebutuhan as.amin.
3. Digestibilitas protein
Ketersediaan as.amino dipengaruhi oleh persiapan makanan. Panas menyebabkan ikatan kimia antara gula dan as.amino yang membentuk ikatan yang tidak dapat dicerna. Digestibitas dan absorpsi dipengaruhi oleh jarak antara waktu makan, dengan interval yang lebih panjang akan menurunkan persaingan dari enzim yang tersedia dan tempat absorpsi.
4. Kandungan energi dari makanan
Jumlah yang mencukupi dari karbohidart harus tersedia untuk mencukupi kebutuhan energi sehingga protein dapat digunakan hanya untuk pembagunan jaringn. Karbohidarat juga mendukung sintesis protein dengan merangsang pelepasan insulin.
5. Status kesehatan
Dapat meningkatkan kebutuhan energi karena meningkatnya katabolisme. Setelah trauma atau operasi as.amino dibutuhkan untuk pembentukan jaringan, penyembuhan luka dan produksi faktor imunitas untuk melawan infeksi.
Kecukupan akan protein yang dianjurkan untuk seseorang, umumnya berbeda-beda. Ini tergantung pada berat badan, umur, dan jenis kelamin serta banyaknya jaringan tubuh yang masih aktif, seperti otot-otot dan kelenjar. Makin besar dan berat orang itu, semakin banyaklah jaringan aktifnya, sehingga makin banyak pula protein yang diperlukan untuk mempertahankan atau memelihara jaringan-jaringan tersebut. Kekurangan Protein bisa berakibat fatal:
• Kerontokan rambut (Rambut terdiri dari 97-100% dari Protein -Keratin)
• Yang paling buruk ada yang disebut dengan [Kwasiorkor], penyakit kekurangan protein. Biasanya pada anak-anak kecil yang menderitanya, dapat dilihat dari yang namanya busung lapar, yang disebabkan oleh filtrasi air di dalam pembuluh darah sehingga menimbulkan odem.Simptom yang lain dapat dikenali adalah:
o hipotonus
o gangguan pertumbuhan
o hati lemak
• Kekurangan yang terus menerus menyebabkan marasmus dan berkibat kematian.
D. Aplikasi Protein
Alfa protein
Salah satu nutrisi ‘emas’ yang terkandung dalam ASI dan membuat ASI menjadi sangat special, adalah Alfa laktalbumin, atau juga biasa disebut dengan alfa protein.
Dalam ASI terdapat 2 jenis protein, yaitu Whey dan Kasein. Whey protein merupakan jenis protein susu yang lebih mudah dicerna karena bentuknya yang lebih lembut. Sedangkan kasein adalah jenis protein susu yang lebih sulit dicerna, terutama oleh bayi dan anak, karena bentuknya yang lebih padat. Tidak seperti susu sapi yang memiliki 20% whey dan 80% kasein, ASI memiliki 60% Whey dan 40% Kasein. Alfa protein merupakan jenis protein terbanyak yang terdapat dalam whey protein ASI.
Jenis whey protein lain yang terdapat dalam susu sapi adalah beta-laktoglobulin, yang merupakan jenis protein yang berpotensi untuk menyebabkan alergi pada bayi dan anak-anak. Beta-laktoglobulin ini justru tidak terdapat dalam ASI tapi banyak terdapat dalam susu sapi.
Alfa protein merupakan protein utama yang terdapat fraksi Whey dalam ASI (22% dari total protein). Alfa protein juga merupakan sumber asam-asam amino esensial yang tidak bisa dibuat dalam tubuh manusia. Salah satu asam amino esensial yang banyak terdapat dalam Alfa protein adalah asam amino triptopan yang salah satu fungsinya adalah untuk mengatur pola-pola kehidupan anak seperti pola tidur. Manfaat alfa protein antara lain :
Meningkatkan daya cerna protein sehingga mudah diserap tubuh.
Menurunkan risiko terjadinya intoleransi karena protein susu.
Sumber asam amino (pembentuk protein) untuk membantu tumbuh kembang bayi dan anak.
Membantu meringankan kerja ginjal untuk mencerna protein.
Sumber asam amino triptophan (asam amino esensial) yang berperan dalam mengatur pola tidur bayi dan anak.
Membantu meningkatkan bakteri baik dalam saluran pencernaan dan bisa membantu mengurasi risiko terjadinya infeksi karena bakteri.
Protein Berpendar Hijau / Green Fluorescent Protein (GPT)
Protein berpendar hijau (Green fluorescent proteins, GFP) adalah sekelompok protein dengan struktur mirip satu sama lain yang berpendar hijau apabila disorot/dipapar dengan cahaya biru. Protein ini pertama kali diisolasi dari ubur-ubur Aequorea victoria yang mampu memendarkan cahaya hijau pada tahun 1962 oleh Osamu Shimomura. "Lukisan" pantai San Diego pada media biakan bakteri yang memiliki mutasi warna GFP yang berbeda-beda, dibuat oleh staf laboratorium Roger Tsien
Pemanfaatan GFP menjadi meluas setelah gen-gen yang bertanggung jawab atasnya berhasil ditemukan dan kemudian digunakan secara luas dalam biologi molekular sejak tahun 1990-an berkat kerja dari Martin Chalfie dalam teknik yang dikenal sebagai reporting system ("Sistem pelaporan"). Teknik ini melibatkan sejumlah gen dengan karakteristik khas karena menghasilkan substansi yang mudah dilacak mata, sehingga disebut gen pelapor (reporter genes), dan bermanfaat sebagai penunjuk secara fisik atas ekspresi suatu gen tertentu pada organisme.
1. Bagaimanakah cara mengidentifikasi adanya protein dalam bahan makanan?
Jawab : *Uji millon, Uji millon dapat digunakan untuk menguji atau mengidentifikasi adanya senyawa protein yang memiliki gugus fenol seperti tiroksin. Pereaksi millon terdiri dari larutan merkuro dan merkuri nitrat dalam asam nitrat.adanya protein dalam sempel dapat diketauhi apabila dalam sampel terdapat endapan putih dan apabila endapan putih itu dipanaskan akan menjadi warna merah.
*Uji biuret adalah salah satu cara pengujian yang memberikan hasil positif pada senyawa-senyawa yang memiliki ikatan peptida. Pengujiannya dapat dilakukan dengan cara : larutan yang mengandung protein ditetesi larutan NaOH, kemudian diberi beberapa tetes larutan CuSO4 encer. Terbetuknya warna ungu, menunjukkan hasil positif adanya protein.
2. Apakah yang dimaksud glikoprotein? Berikan contohnya!
Jawab : Glikoprotein adalah suatu protein yang mengandung rantai oligosakarida yang mengikat glikan [1] denganikatan kovalen pada rantai polipeptida bagian samping.
Contoh: Ditemukan dalam berbagai situasi yang berbeda di dalam cairan dan jaringan, termasuk membran sel. Ada juga Glikoprotein larut; contoh ini adalah putih telur dan plasma darah.
3. Apakah yang dimaksud denaturasi protein? Sebutkan hal-hal yang menyebabkan terjadinya denaturasi protein!
Jawab :Denaturasi adalah sebuah proses di mana protein atau asam nukleat kehilangan struktur tersier dan struktur sekunder dengan penerapan beberapa tekanan eksternal atau senyawa, seperti asam kuat atau basa, garam anorganik terkonsentrasi, sebuah misalnya pelarut organik (cth, alkohol atau kloroform), atau panas.
Hal-hal yang menyebabkan terjadinya denaturasi protein:
- Suhu yang tinggi (panas)
- Pengaruh asam (perubahan pH yang ekstrim)
- Pelarut organik, zat kimia tertentu, urea, detergen (pengaruh basa)
- Pengaruh garam
- Karena pengaruh mekanik (goncangan).
4. Mengapa protein yang mengalami denaturasi menjadi kehilangan fungsi biologisnya?
Jawab : Protein didenaturasi dapat menunjukkan berbagai karakteristik, dari hilangnya kelarutan untuk agregasi komunal. agregasi Komunal adalah fenomena agregasi protein hidrofobik untuk datang mendekat dan membentuk ikatan antara mereka, sehingga mengurangi luas areal terkena air.
Kebanyakan protein biologis kehilangan fungsi biologisnya ketika didenaturasi. Sebagai contoh, enzim kehilangan sifatnya, karena mengikat substrat tidak bisa lagi ke situs aktif, dan karena residu asam amino yang terlibat dalam menstabilkan keadaan transisi substrat 'tidak lagi diposisikan untuk dapat melakukannya.
Dalam banyak protein (tidak seperti putih telur), denaturasi adalah reversibel (protein bisa mendapatkan kembali bentuk asal mereka ketika pemicu denaturasi dihapus). Ini penting, karena menyebabkan gagasan bahwa semua informasi yang dibutuhkan bagi protein untuk menganggap bentuk asli mereka dikodekan dalam struktur primer protein, dan karenanya di dalam DNA kode tersebut untuk protein
5. Apakah urea CO(NH2)2 menunjukkan uji yang positif terhadap uji biuret?
Jawab : Ya . Urea bukan merupakan protein, namun karena urea mengandung gugus –NH2 (amin) yang mempunyai kesamaan dengan gugus protein sehingga membentuk warna ungu sebagai hasil reaksi antara Cu2+ dengan –NH. Oleh karena itu urea memberikan hasil positif pada uji biuret. Pada pemanasan urea terbentuk gelembung gas dan mengeluarkan bau ammonia yang sangat menyengat.
6. Apakah yang dimaksud struktur kuarterner protein?
Jawab : Struktur kuarterner adalah gambaran dari pengaturan sub-unit atau promoter protein dalam ruang. Struktur ini memiliki dua atau lebih dari sub-unit protein dengan struktur tersier yang akan membentuk protein kompleks yang fungsional. ikatan yang berperan dalam struktur ini adalah ikatan nonkovalen, yakni interaksi elektrostatis, hidrogen, dan hidrofobik. Protein dengan struktur kuarterner sering disebut juga dengan protein multimerik. Jika protein yang tersusun dari dua sub-unit disebut dengan protein dimerik dan jika tersusun dari empat sub-unit disebut dengan protein tetramerik.
7. Suatu Sampel ditetesi larutan NaOH, Kemudian Larutan tembaga(II) sulfat yang encer menghasilkan warna ungu. Bila sampel dipanaskan dengan HNO3 pekat kemudian dibuat alkalis dengan NaOH terjadi warna jingga. Apakah yang dapat anda simpulkan dari Uji di Atas?
Jawab : Pada sample terkandung protein dengan adanya ikatan peptida yang positif dari uji Biuret dan adanya fenil (cincin benzene) yang positif dari uji Xantoproteat.
8. Suatu sampel memberi hasil yang positif terhadap uji ninhidrin dan biuret tetapi negatif terhadap penambahan larutan NaOH dan Pb(NO3)2. Kesimpulan apakah yang dapat diperoleh dari fakta tersebut?
Jawab : Pada sample terdapat protein, dengan adanya asam amino bebas dari uji Ninhidrin (+) dan adanya ikatan peptida dari uji Biuret (+). Tetapi sample tidak mengandung PbS karena uji Belerang yang negatif (-).
9. Apakah yang dimaksud dengan enzim? Berikan contohnya!
Jawab : Enzim adalah biomolekul berupa protein yang berfungsi sebagai katalis (senyawa yang mempercepat proses reaksi tanpa habis bereaksi) dalam suatu reaksi kimia organik.
Contoh: *Amilase :Berfungsi memecah pati atau glikogen.
*Invertase: Menghidrolisis sukrosa pada gula bukan pereduksi
*Enzim pektin
10. Bila 20 molekul glisin berpolimerisasi membentuk polipeptida. Berapakah massa molekul relatif polipeptida yang terbentuk? Ar H = 1, C = 12, N = 14, O = 16).
Mr Glisin = 75 g/mol
Jadi, 20 molekul Glisin = 20 x 75 g/mol = 1500 g/mol
Peptida merupakan molekul yang terbentuk dari dua atau lebih asam amino. Jika jumlah asam amino masih di bawah 50 molekul disebut peptida, namun jika lebih dari 50 molekul disebut dengan protein.
Banyak asam amino yang berikatan melalui ikatan peptida membentuk rantai polipeptida bercabang Satu unit asam amino dalam rantai polipeptida disebut residu.
Peptida sederhana mengandung dua, tiga, empat, atau lebih residu asam amino, masing-masing disebut dipeptda, tripeptida, tetrapeptida dan seterusnya. Bila peptida mengandung banyak ikatan (dikatakan lebih dari 10 ) residu asam amino, peptida dinamakan polipeptida
Ikatan Peptida
Ikatan peptida adalah suatu amida yang dibentuk dari dua asam α-amino dari suatu adam amino dan gugus karboksil dari asam amino yang lain
Ketika ikatan peptida terbentuk antara asam amino, molekul air hilang. Jenis reaksi ini disebut reaksi kondensasi. Molekul air (H2O) yang dibuat oleh hilangnya hidroksil (OH-) dari gugus karboksil dan atom hidrogen (H) dari gugus amino.
Ikatan peptida memiliki karakter ikatan rangkap. Hal ini dapat dibuktikan dari panjang ikatannya.
Analisis sinar-X menunjukkan bahwa rantai samping asam amino di sekitar bidang ikatan peptida berada dalam hubungan tipe trans.
Oksitosin
suatu hormon berasal dari kelenjar dibawah otak (pituitary hormone) yang menyebabkan pengerutan uterin selama melahirkan bayi, merupakan peptida lain yang penting. Perhatikan bahwa oksitosin berupa peptida siklik yang digabung oleh suatu hubungan sistina S-S.
Enkafalin
adalah zat-zat penghilang nyeri yang dihasilkan tubuh sendiri, zat ini adalah peptida-peptida otak yang mengandung hanya lima residu asam amino
Leu-enkafalin
Met-enkafalin
Asam amino adalah sembarang senyawa organik yang memiliki gugus fungsional karboksil (-COOH) dan amina (biasanya NH2).
Dalam biokimia seringkali pengertiannya dipersempit: keduanya terikat pada satu atom karbon (C) yang sama atau disebut atom C "alfa". Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa.
1. Struktur Asam Amino
Struktur asam amino secara umum adalah satu atom karbon (C) yang mengikat empat gugus:
- gugus amina (NH2),
- gugus karboksil (COOH),
- atom hidrogen (H),
- dan satu gugus sisa (R, dari residue) atau disebut juga gugus atau rantai samping yang membedakan satu asam amino dengan asam amino lainnya.
2. Sifat Asam Amino
- Memiliki titik leleh lebih dari 200 derajat
- Larut dalam air dan pelarut polar lain tetapi tidak larut dalam pelarut nonpolar seperti dietil eter atau benzena.
- Momen dipol yang besar
- Kurang bersifat asam dibandingkan sebagian besar asam karboksil
- Kurang basa dibandingkan sebagian besar amina.
3. Klasifikasi Asam Amino
a. Asam Amino Esensial
yaitu asam amino yang tidak mampu disintesis oleh tubuh dan harus didatangkan dari asupan makanan.
contoh:
- Arginin
- Fenil alanin
- Histidin
- Isoleusin
- Leusin
- Lisin
- Metionin
- Treonin
- Triptofan
- Valin
b. Asam Amino non Esensial
yaitu Asam amino yang diperlukan tubuh dan dapat disintesis oleh tubuh dalam jumlah cukup untuk memenuhi kebutuhan tubuh terhadap asam amino tersebut
contoh:
- Alanin
- Asam Aspartat
- Asam glutamat
- Asparagin
- Glisin
- Glutamin
- Prolin
- Serin
- Sistein
- Tirosin
Kimia organik adalah percabangan studi ilmiah dari ilmu kimia mengenai struktur, sifat, komposisi, reaksi, dan sintesis senyawa organik. Senyawa organik dibangun terutama oleh karbon dan hidrogen, dan dapat mengandung unsur-unsur lain seperti nitrogen, oksigen, fosfor, halogen dan belerang.
Definisi asli dari kimia organik ini berasal dari kesalahpahaman bahwa semua senyawa organik pasti berasal dari organisme hidup, namun telah dibuktikan bahwa ada beberapa perkecualian. Bahkan sebenarnya, kehidupan juga sangat bergantung pada kimia anorganik; sebagai contoh, banyak enzim yang mendasarkan kerjanya pada logam transisi seperti besi dan tembaga, juga gigi dan tulang yang komposisinya merupakan campuran dari senyama organik maupun anorganik. Contoh lainnya adalah larutan HCl, larutan ini berperan besar dalam proses pencernaan makanan yang hampir seluruh organisme (terutama organisme tingkat tinggi) memakai larutan HCl untuk mencerna makanannya, yang juga digolongkan dalam senyawa anorganik. Mengenai unsur karbon, kimia anorganik biasanya berkaitan dengan senyawa karbon yang sederhana yang tidak mengandung ikatan antar karbon misalnya oksida, garam, asam, karbid, dan mineral. Namun hal ini tidak berarti bahwa tidak ada senyawa karbon tunggal dalam senyawa organik misalnya metan dan turunannya.
Ada banyak sekali penerapan kimia organik dalam kehidupan sehari-hari, diantaranya adalah pada bidang makanan, obat-obatan, bahan bakar, pewarna, tekstil, parfum, dan lain sebagainya.